1. Substitution and elimination rate studies on some deuteroisopropyl bromides
By Shiner, V. J., Jr.
From *Journal of the American Chemical Society* (1952), 74, 5285-8. Language: Unavailable, Database: CAPLUS,
DOI:10.1021/ja01141a014
~7 Citings

2. The structure of ketene dimer
By Johnson, John R.; Shiner, V. J., Jr.
From *Journal of the American Chemical Society* (1953), 75, 1350-5. Language: Unavailable, Database: CAPLUS,
DOI:10.1021/ja01102a026
~3 Citings

3. Solvolysis rates of some deuterated tertiary amyl chlorides
By Shiner, V. J., Jr.
From *Journal of the American Chemical Society* (1953), 75, 2925-9. Language: Unavailable, Database: CAPLUS,
DOI:10.1021/ja01108a040
~9 Citings

4. Oxidation of \(\alpha\)-glycols by periodic acid
By Buist, G. J.; Bunton, C. A.; Shiner, V. J.
From *Research (London)* (1953), 6(Suppl. No. 1), 4S-5S. Language: Unavailable, Database: CAPLUS
~0 Citings

5. Mechanism of elimination reactions. XVII. The comparative unimportance of steric strain in unimolecular olefin elimination
By Hughes, E. D.; Ingold, C. K.; Shiner, V. J., Jr.
From *Journal of the Chemical Society* (1953), 3827-32. Language: Unavailable, Database: CAPLUS,
DOI:10.1039/jr9530003827
~1 Citing

6. The effects of deuterium substitution on the rates of organic reactions. III. Solvolysis rates and Arrhenius parameters for 2,3-dimethyl-2-chlorobutane and its 3-deuterio analog
By Shiner, V. J., Jr.
From *Journal of the American Chemical Society* (1954), 76, 1603-6. Language: Unavailable, Database: CAPLUS,
DOI:10.1021/ja01635a041
~1 Citing

7. The effects of \(\gamma\)-methyl substitution on the rates of the bimolecular displacement and elimination reactions of alkyl halides
8. Rapid argentometric determination of halides by direct potentiometric titration
By Shiner, V. J., Jr.; Smith, Morris L.
~3 Citings

9. Rapid argentimetric determination of halides by direct potentiometric titration-addendum
By Shiner, V. J., Jr.; Smith, Morris L.
~0 Citings

10. Deuterium isotope rate effects and steric inhibition of hyperconjugation
By Shiner, V. J., Jr.
From Journal of the American Chemical Society (1956), 78, 2653-4. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja01592a098
~3 Citings

11. Solvent effects on the rates of solvolysis of some alkylbenzhydryl chlorides
By Shiner, V. J., Jr.; Verbanic, C. J.
From Journal of the American Chemical Society (1957), 79, 369-73. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja01559a035
~2 Citings

12. Effects of deuterium substitution on the rates of organic reactions. V. Hydrolysis of α-deuterio ketals
By Shiner, V. J., Jr.; Cross, Sally
From Journal of the American Chemical Society (1957), 79, 3599-602. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja01570a080
~4 Citings

13. Effects of deuterium substitution on the rates of organic reactions. IV. Solvolysis of p-deuterioalkyl benzhydryl chlorides
By Shiner, V. J., Jr.; Verbanic, C. J.
From Journal of the American Chemical Society (1957), 79, 373-5. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja01559a036
14. The mechanism of the Hofmann elimination reaction. Deuterium exchange and isotope rate effects
 By Shiner, V. J., Jr.; Smith, Morris L.
 From Journal of the American Chemical Society (1958), 80, 4095-8. Language: Unavailable, Database: CAPLUS,
 DOI:10.1021/ja01548a069

~4 Citings

15. Kinetics and mechanism of the periodate oxidation of α-diketones
 By Shiner, V. J., Jr.; Wasmuth, C. R.
 From Journal of the American Chemical Society (1959), 81, 37-42. Language: Unavailable, Database: CAPLUS,
 DOI:10.1021/ja01510a009

~16 Citings

16. Deuterium isotope effects and hyperconjugation
 By Shiner, V. J., Jr.

~10 Citings

17. Steric inhibition of a secondary deuterium isotope effect
 By Shiner, V. J., Jr.
 From Journal of the American Chemical Society (1960), 82, 2655-6. Language: Unavailable, Database: CAPLUS,
 DOI:10.1021/ja01495a077

~2 Citings

18. Solvolytic deuterium isotope effects
 By Bunton, C. A.; Fuller, N.; Perry, S. G.; Shiner, V. J., Jr.
 From Chemistry & Industry (London, United Kingdom) (1960), 1130-1. Language: Unavailable, Database: CAPLUS

~1 Citing

19. Secondary deuterium isotope effects in chemical and biochemical reactions
 By Shiner, V. J., Jr.; Mahler, Henry R.; Baker, R. H., Jr.; Hiatt, R. R.

~1 Citing
20. Periodate oxidation of 1,2-diols, diketones, and hydroxy ketones. The use of oxygen-18 as a tracer
By Bunton, C. A.; Shiner, V. J., Jr.
From Journal of the Chemical Society (1960), 1593. Language: Unavailable, Database: CAPLUS,
DOI:10.1039/jr9600001593
~6 Citings

21. The effects of deuterium substitution on the rates of organic reactions. VI. Secondary isotope effects on the solvolysis rates of γ-methyl-substituted tertiary alkyl chlorides
By Shiner, V. J., Jr.
DOI:10.1021/ja01462a047
~3 Citings

22. Pyridine catalyzed hydrolysis of carboxylic anhydrides
By Bunton, C. A.; Fuller, N. A.; Perry, S. G.; Shiner, V. J., Jr.
~0 Citings

23. Isotope effects in deuterium oxide solution. III. Reactions involving primary effects
By Bunton, C. A.; Shiner, V. J. Jr.
~0 Citings

24. Isotope effects in deuterium oxide solution. II. Reaction rates in acid, alkaline, and neutral solutions, involving only secondary solvent effects
By Bunton, C. A.; Shiner, V. J. Jr.
~1 Citing

25. Isotope effects in deuterium oxide solution. I. Acid-base equilibriums
By Bunton, C. A.; Shiner, V. J., Jr.
DOI:10.1021/ja01462a008
~25 Citings

26. Arrhenius parameters of the deuterium isotope rate effect in a base-promoted elimination reaction. Evidence for proton tunnelling
By Shiner, V. J., Jr.; Smith, Morris L.

~9 Citings

27. The mechanisms of substitution of propargylic halides. 3Bromo-3-methyl-1-butyne
By Shiner, V. J., Jr.; Wilson, Joseph W.

~2 Citings

28. The mechanism of decarboxylation of glycidic acids
By Shiner, V.J., Jr.; Martin, Brian
From *Journal of the American Chemical Society* (1962), 84, 4824-7. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja00883a038

~3 Citings

29. The effects of deuterium substitution on the rates of organic reactions. VII. Secondary effects on the solvolysis of 3-halo-3-methyl-1-butyynes
By Shiner, V. J., Jr.; Wilson, Joseph W.; Heinemann, Guenther; Solliday, Norman

~0 Citings

30. Precise conductance measurements and the determination of rate data
By Murr, B. L., Jr.; Shiner, V. J., Jr.
From *Journal of the American Chemical Society* (1962), 84, 4672-7. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja00883a012

~6 Citings

31. Mechanism of enzyme-catalyzed oxidation-reduction reactions. V. An exchange reaction catalyzed by liver alcohol dehydrogenase
By Fernandez, V. P.; Mahler, H. R.; Shiner, V. J., Jr.

~0 Citings

32. Mechanism of enzyme-catalyzed oxidation-reduction reactions. IV. A proposed mechanism for the overall reaction catalyzed by liver alcohol dehydrogenase
By Mahler, H.R.; Baker, R. H., Jr.; Shiner, V. J., Jr.
From *Biochemistry* (1962), 1(1), 47-52. Language: Unavailable, Database: CAPLUS, DOI:10.1021/bi00907a008
33. The structures of some aluminum alkoxides

By Shiner, V. J., Jr.; Whittaker, D.; Vernandez, V. P.

~43 Citings

34. The hydrolysis of carboxylic anhydrides. III. Reactions in initially neutral solution

By Bunton, C. A.; Fuller, N. A.; Perry, S. G.; Shiner, V. J., Jr.

~22 Citings

35. The effects of deuterium substitution on the rates of organic reactions. VIII. The solvolysis of tert-butyl-d1, -d2, -d3, -d6, and -d9 chlorides

By Shiner, V. J., Jr.; Murr, B. L.; Heinemann, G.

From *Journal of the American Chemical Society* (1963), 85(16), 2413-16. Language: Unavailable, Database: CAPLUS

~9 Citings

36. The effects of deuterium substitution on the rates of organic reactions. IX. Bridgehead β-deuterium in a carbonium ion solvolysis

By Shiner, V. J., Jr.; Humphrey, J. S., Jr.

~14 Citings

37. Mechanism of the Meerwein-Ponndorf-Verley reaction

By Shiner, V. J., Jr.; Whittaker, D.

From *Journal of the American Chemical Society* (1963), 85(15), 2337-8. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja00898a043

~15 Citings

38. The effects of deuterium substitution on the rates of organic reactions. X. The solvolyses of 4-chloro-4-methyl-2-pentyne and its deuterated analogs

By Shiner, V. J., Jr.; Kriz, George S., Jr.

From *Journal of the American Chemical Society* (1964), 86(13), 2643-5. Language: Unavailable, Database: CAPLUS, DOI:10.1021/ja01067a025

~6 Citings
39. The conformational dependence of secondary deuterium isotope effects in solvolytic reactions

By Shiner, V. J., Jr.; Jewett, John G.

~2 Citings

40. T and D Arrhenius parameter effects in a base-promoted elimination reaction: Evidence for tunnelling

By Shiner, V. J., Jr.; Martin, Brian

~2 Citings

41. The structures of complexes of ethylenediamine with some aluminum alkoxides

By Shiner, V. J., Jr.; Whittaker, D.

~3 Citings

42. Nonchair transition state conformation in trans-4-tert-butyl-cyclohexyl brosylate solvolysis

By Shiner, V. J., Jr.; Jewett, John G.
From Journal of the American Chemical Society (1965), 87(6), 1383-4. Language: English, Database: CAPLUS, DOI:10.1021/ja01084a040

~2 Citings

43. Hydrogen participation in cis-tert-butylcyclohexyl brosylate solvolysis

By Shiner, V. J., Jr.; Jewett, John G.
From Journal of the American Chemical Society (1965), 87(6), 1382-3. Language: English, Database: CAPLUS, DOI:10.1021/ja01084a039

~2 Citings

44. Fragmentation, rearrangement, and elimination in heptamethylpropane derivatives

By Shiner, V. J., Jr.; Meier, Guenter F.

~2 Citings
45. Experimental determination of the disproportionation of hydrogen isotopes in water
 By Friedman, L.; Shiner, V. J. Jr.
 From Journal of Chemical Physics (1966), 44(12), 4639-40. Language: English, Database: CAPLUS,
 DOI:10.1063/1.1726689
 ~11 Citings

46. Mechanisms of nucleophilic substitution of propargyl and allenyl halides. Base-promoted reactions of 3-bromo-3-methyl-1-butyne and 1-bromo-3-methyl-1,2-butadiene in aqueous ethanol
 By Shiner, Vernon J., Jr.; Humphrey, J. Stevenson, Jr.
 From Journal of the American Chemical Society (1967), 89(3), 622-30. Language: English, Database: CAPLUS,
 DOI:10.1021/ja00979a028
 ~11 Citings

47. Solvolytic α-deuterium effects for different leaving groups
 By Shiner, Vernon J., Jr.; Rapp, M. W.; Halevi, Emil A.; Wolfsberg, Max
 From Journal of the American Chemical Society (1968), 90(25), 7171-2. Language: English, Database: CAPLUS,
 DOI:10.1021/ja01027a075
 ~10 Citings

48. Effects of deuterium substitution on the rates of organic reactions. XI. α- and β-Deuterium effects on the solvolysis rates of a series of substituted 1-phenylethyl halides
 By Shiner, V. J., Jr.; Buddenbaum, W. E.; Murr, B. L.; Lamaty, G.
 From Journal of the American Chemical Society (1968), 90(2), 418-26. Language: English, Database: CAPLUS,
 DOI:10.1021/ja01004a037
 ~18 Citings

49. Solvolysis rates and deuterium isotope effects in 2,2,2-trifluoroethanol-water mixtures
 By Shiner, Vernon J., Jr.; Dowd, William; Fisher, Robert Dowling; Hartshorn, S. R.; Kessick, M. A.; Milakofsky, Louis; Rapp, M. W.
 From Journal of the American Chemical Society (1969), 91(17), 4838-43. Language: English, Database: CAPLUS,
 DOI:10.1021/ja01045a043
 ~23 Citings

50. Kinetics of the Meerwein-Ponndorf-Verley reaction
 By Shiner, Vernon J., Jr.; Whittaker, David
 DOI:10.1021/ja01030a031
 ~37 Citings
51. Enhancement of solvolysis rates by Wagner-Meerwein rearrangements of ion pairs
 By Shiner, Vernon J., Jr.; Fisher, Robert Dowling; Dowd, William
 DOI:10.1021/ja50001a041
 ~10 Citings

52. Addition of undissociated strong acids to alkenes. "Hidden return" revealed
 By Shiner, Vernon J., Jr.; Dowd, William
 From Journal of the American Chemical Society (1969), 91(23), 6528-9. Language: English, Database: CAPLUS,
 DOI:10.1021/ja01051a082
 ~8 Citings

53. Search for alkanes of 15-30 carbon-atom length in lunar fines
 By Meinschein, Warren G.; Jackson, Thomas Joseph; Mitchell, James Michael; Cordes, Eugene; Shiner, Vernon J., Jr.
 Edited By: Levinson, A. A
 ~0 Citings

54. Search for alkanes of 15 to 30 carbon atom length
 By Meinschein, Warren G.; Cordes, Eugene; Shiner, V. J., Jr.
 From Science (Washington, DC, United States) (1970), 167(3918), 753-4. Language: English, Database: CAPLUS,
 DOI:10.1126/science.167.3918.753
 ~0 Citings

55. Hydrogen participation in open-chain arenesulfonate solvolysis
 By Shiner, Vernon J., Jr.; Stoffer, J. O.
 From Journal of the American Chemical Society (1970), 92(10), 3191-2. Language: English, Database: CAPLUS,
 DOI:10.1021/ja00713a049
 ~0 Citings

56. Deuterium isotope effects in solvolytic substitution at saturated carbon
 By Shiner, V. J., Jr.
 ~0 Citings

57. α-Deuterium effects in SN2 reactions with solvent
 By Shiner, Vernon J., Jr.; Rapp, M. W.; Pinnick, H. R., Jr.
 DOI:10.1021/ja00704a056
58. Sulfonate leaving groups, structure and reactivity. 2,2,2-Trifluoroethanesulfonate

59. Deuterium effects on binding of reduced coenzyme alcohol dehydrogenase isoenzyme EE
By Bush, Karen; Mahler, H. R.; Shiner, V. J., Jr.

60. Dependence of solvolytic α-deuterium rate effects on the nature of the leaving group
By Shiner, Vernon J., Jr.; Dowd, William

61. α-Deuterium effects on the rates of solvolysis of a 2-adamantyl sulfonate ester
By Shiner, V. J., Jr.; Fisher, Robert Dowling
From Journal of the American Chemical Society (1971), 93(10), 2553-4. Language: English, Database: CAPLUS, DOI:10.1021/ja00739a043

62. Trifluoromethanesulfonyl azide. Its reaction with alkyl amines to form alkyl azides
By Cavender, C. J.; Shiner, V. J., Jr.

63. Calculation of H/D carbon-12/carbon-13, and carbon-12/carbon-14 fractionation factors from valence force fields derived for a series of simple organic molecules
By Hartshorn, S. R.; Shiner, V. J., Jr.
From Journal of the American Chemical Society (1972), 94(26), 9002-12. Language: English, Database: CAPLUS, DOI:10.1021/ja00781a004
64. Solvolysis of optically active 1-phenylethyl chloride. Polarimetric rates, deuterium isotope effects, product configurations, and mechanisms
By Shiner, V. J., Jr.; Hartshorn, S. R.; Vogel, P. C.
~2 Citings

65. Secondary deuterium isotope effects in solvolysis of cyclopentyl p-bromobenzenesulfonate. Stereochemistry of E1 and SN1 reactions
By Humski, Kresimir; Sendijarevic, Vahid; Shiner, Vernon J., Jr.
From Journal of the American Chemical Society (1973), 95(23), 7722-8. Language: English, Database: CAPLUS, DOI:10.1021/ja00804a029
~5 Citings

66. Interconversion reactions of aluminum isopropoxide polymers
By Kleinschmidt, D. C.; Shiner, V. J., Jr.; Whittaker, D.
~11 Citings

67. Deuterium isotope effects on initial rates of the liver alcohol dehydrogenase reaction. V
By Bush, Karen; Shiner, Vernon J., Jr.; Mahler, H. R.
From Biochemistry (1973), 12(23), 4802-5. Language: English, Database: CAPLUS, DOI:10.1021/bi00747a037
~4 Citings

68. Stereochemistry of olefin formation in cyclopentyl brosylate solvolysis
By Humski, K.; Sendijarevic, V.; Shiner, V. J., Jr.
~4 Citings

69. The role of mass spectrometry in the study of heavy-atom kinetic isotope effects
By Shiner, V. J., Jr.; Buddenbaum, W. E.
Edited By: Maccoll, Allan
~0 Citings
70. Preparation of some aluminum monoisopropoxide bisphenoxides
By David, P. G.; David, Feeya; Shiner, V. J., Jr.
From Ciencia e Cultura (Sao Paulo) (1975), 27(1), 50-3. Language: English, Database: CAPLUS

~1 Citing

71. Methyl-d3 isotope effects, α-methyl hydrogen rate effects, and the analysis of some solvolytic reaction mechanisms
By Fisher, Robert D.; Seib, Richard C.; Shiner, Vernon J., Jr.; Szele, Ivanka; Tomic, Mihovil; Sunko, Dionis E.
From Journal of the American Chemical Society (1975), 97(9), 2408-13. Language: English, Database: CAPLUS, DOI:10.1021/ja00842a017

~9 Citings

72. Isotope effects and reaction mechanisms
By Shiner, V. J., Jr.

~2 Citings

73. Chloroalkoxide complexes of zinc
By Shiner, V. J., Jr.; Beg, M. A.

~2 Citings

74. Stereochemistry of solvolytic substitution of cyclopentyl p-bromobenzenesulfonate
By Humski, K.; Sendijarevic, V.; Shiner, V. J., Jr.
From Journal of the American Chemical Society (1976), 98(10), 2865-8. Language: English, Database: CAPLUS, DOI:10.1021/ja00426a032

~4 Citings

75. Influence of neighboring phenyl participation on the α-deuterium isotope effect on solvolysis rates. Neophyl esters
By Shiner, V. J., Jr.; Seib, R. C.
From Journal of the American Chemical Society (1976), 98(3), 862-4. Language: English, Database: CAPLUS, DOI:10.1021/ja00419a051

~4 Citings

76. Carbon-13 kinetic isotope effects and reaction coordinate motions in transition states for SN2 displacement reactions
77. Computation of isotope effects on equilibria and rates
By Buddenbaum, Warren E.; Shiner, V. J., Jr.
Edited By:Cleland, W. Wallace; O’Leary, Marion H.; Northrop, Dexter B
~7 Citings

78. Solvolysis of cyclopentyl p-bromobenzensulfonate in aqueous hexafluoroisopropyl alcohol. Deuterium rate effects, stereochemistry of substitution and elimination, and reaction mechanism
By Seib, R. C.; Shiner, V. J., Jr.; Sendijarevic, V.; Humski, K.
From Journal of the American Chemical Society (1978), 100(26), 8133-7. Language: English, Database: CAPLUS, DOI:10.1021/ja00494a019
~7 Citings

79. Neighboring group participation effects in the solvolysis of isobutyl and neopentyl sulfonate esters
By Shiner, V. J., Jr.; Seib, R. C.
~1 Citing

80. Multiparameter optimization procedure for the analysis of reaction mechanistic schemes. Solvolyzes of cyclopentyl p-bromobenzensulfonate
By Shiner, V. J., Jr.; Nollen, Dennis A.; Humski, Kresimir
~9 Citings

81. Deuterium isotope effects for migrating and nonmigrating groups in the Wagner-Meerwein rearrangement. An experimental dissection of the γ-deuterium rate effects in the solvolysis of neopentyl-type esters
By Shiner, V. J., Jr.; Tai, Jimmy J.
~0 Citings
82. Deuterium isotope effects for migrating and nonmigrating groups in the solvolysis of neopentyl-type esters
By Shiner, V. J., Jr.; Tai, Jimmy J.
From Journal of the American Chemical Society (1981), 103(2), 436-42. Language: English, Database: CAPLUS, DOI:10.1021/ja00392a031
~6 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

83. Deuterium isotope effects on the solvolysis of 1-(1-adamantyl)ethyl sulfonate esters
By Shiner, V. J., Jr.; Neumann, Thomas E.; Fisher, Robert D.
~0 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

84. Mechanism of solvolysis of 2,2-dimethylcyclopentyl p-bromobenzenesulfonate
By Shiner, V. J., Jr.; Imhoff, Michael A.
~2 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

85. γ-Silicon stabilization of carbonium ions in solvolysis. I. Solvolysis of cis- and trans-3-(trimethylsilyl)cyclohexyl p-bromobenzenesulfonates
By Shiner, V. J., Jr.; Ensinger, Mark W.; Kriz, George S.
~0 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

86. γ-Silicon stabilization of carbonium ions
By Davidson, Ernest R.; Shiner, V. J., Jr.
~23 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

87. Gamma silyl stabilized carbonium ion intermediates
By Ensinger, Mark W.; Shiner, V. J., Jr.
~7 Citings
Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

88. γ-Silicon stabilization of carbonium ions in solvolysis. 2. Solvolysis of 4-(trimethylsilyl)-2-butyl p-bromobenzenesulfonates
89. Theoretical study of α-lactone, acetoxyl diradical, and the gas-phase dissociation of the chloracetate anion

By Antolovic, Danko; Shiner, Vernon J.; Davidson, Ernest R.
~23 Citings

90. Stereochemical course of solvolytic 1,3-deoxysilylation

By Coope, Janet; Shiner, V. J., Jr.
~8 Citings

91. Protium-deuterium fractionation factors for organic molecules calculated from vibrational force fields

By Shiner, Vernon J.; Neumann, Thomas E.
~3 Citings

92. γ-Silicon stabilization of carbonium ions in solvolysis. 3. Solvolysis of 4-(trimethylsilyl)-3-methyl-2-butyl p-bromobenzenesulfonates

By Shiner, V. J., Jr.; Ensinger, Mark W.; Huffman, John C.
From Journal of the American Chemical Society (1989), 111(18), 7199-205. Language: English, Database: CAPLUS, DOI:10.1021/ja00200a045
~22 Citings

93. Through-bond transmission of substituent effects in the bicyclo[2.2.2]octane ring system: solvolysis of 4-deuterio- and 4-metalloidal (M(CH$_3$)$_3$, M = silicon, germanium and tin)-substituted bicyclo[2.2.2]oct-1-yl p-nitrobenzenesulfonates and methanesulfonates

By Adcock, William; Krstic, Alexander R.; Duggan, Peter J.; Shiner, V. J., Jr.; Coope, Janet; Ensinger, Mark W.
From Journal of the American Chemical Society (1990), 112(8), 3140-5. Language: English, Database: CAPLUS, DOI:10.1021/ja00164a040
~27 Citings

94. Solvolytic acceleration accompanying (trimethylsilyl)methyl migration
95. Mechanism of solvolysis of 1-(1-adamantyl)ethyl sulfonates
By Wilgis, F. P.; Neumann, T. E.; Shiner, V. J., Jr.
From Journal of the American Chemical Society (1990), 112(11), 4435-46. Language: English, Database: CAPLUS, DOI:10.1021/ja00167a048
~10 Citings

96. Evidence for 2-fold hyperconjugation in the solvolysis of 5-(trimethylsilyl) and 5-(trimethylstannyl)-2-adamantyl sulfonates
By Adcock, W.; Coope, Janet; Shiner, V. J., Jr.; Trout, Neil A.
~32 Citings

97. τ-Silicon stabilization of carbonium ions in solvolysis. 4. Solvolysis of cis- and trans-3-(trimethylsilyl)cyclohexyl and -3-tert-butylcyclohexyl p-bromobenzenesulfonates
By Shiner, V. J., Jr.; Ensinger, Mark W.; Kriz, George S.; Halley, Karen A.
~23 Citings

98. Solvolysis rates and β-deuterium secondary kinetic isotope effects of some tertiary and secondary alk-5-enyl derivatives. Evidence for π-participation
By Orlovic, Mirko; Borcic, Stanko; Humski, Kresimir; Kronja, Olga; Imper, Vera; Polla, Eugenio; Shiner, Veron J., Jr.
~9 Citings

99. Hydrogen participation in the solvolysis of 2-methylcyclopentyl arenesulfonates
By Imhoff, Michael A.; Ragain, R. Michael; Moore, Kimberly; Shiner, V. J., Jr.
~6 Citings

100. Solvolysis of 1-(3-noradamantyl)-2-methylpropyl and 1-(3-noradamantyl)-2,2-dimethylpropyl pentamethylbenzenesulfonates
101. Heavy atom isotope rate effects in solvolytic nucleophilic reactions at saturated carbon
By Shiner, V. J., Jr.; Wilgis, F. P.
From Isotopes in Organic Chemistry (1992), 8(Heavy At. Isot. Eff.), 239-335. Language: English, Database: CAPLUS
~22 Citings

102. Solvolysis of 1-(3-noradamantyl)ethyl sulfonates
By Stoelting, D. T.; Shiner, V. J., Jr.
~14 Citings

103. Effects of Bridgehead Substitution on Structure and Reactivity of the 7-Norbornyl Cation
By Sunko, D. E.; Vancik, H.; Mihalic, Z.; Shiner, V. J., Jr.; Wiglis, F. P.
~5 Citings

104. Colorant for use in business recording
By Davis, Chester; Wilgis, Ford P.; Shiner, Vernon J., Jr.
~1 Citing

105. The mechanism of solvolysis of 2,2-dimethyl-3-pentyl and 1-(1-adamantyl)propyl sulfonates
By Shiner, Vernon J., Jr.; Neumann, Thomas E.; Basinger, Bradley B.
~7 Citings

106. Leuco dye for use in business recording
By Davis, Chester; Wilgis, Ford Paul; Shiner, Vernon J., Jr.
~0 Citings
107. γ-Silyl-stabilized tertiary ions? Solvolysis of 4-(trimethylsilyl)-2-chloro-2-methylbutane

By Tilley, Leon J.; Shiner, V. J., Jr.

~14 Citings

Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

108. Stable chlorine and carbon isotopic compositions of selected semi-volatile organic contaminants

By Drenzek, Nicholas J.; Reddy, Christopher M.; Eglinton, Timothy I.; Sturchio, Neil C.; Heraty, Linnea J.; Tarr, Carly H.; Shiner, Vernon J.

~0 Citings

Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

109. Stable chlorine intramolecular kinetic isotope effects from the abiotic dehydrochlorination of DDT

By Reddy, Christopher M.; Drenzek, Nicholas J.; Eglinton, Timothy I.; Heraty, Linnea J.; Sturchio, Neil C.; Shiner, Vernon J.

~25 Citings

Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

110. Stable chlorine and carbon isotopic compositions of selected semi-volatile organochlorine compounds

By Drenzek, Nicholas J.; Tarr, Carly H.; Eglinton, Timothy I.; Heraty, Linnea J.; Sturchio, Neil C.; Shiner, Vernon J.; Reddy, Christopher M.

~46 Citings

Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

111. Solvolysis of (Z)-5-Trimethylstannyl 2-Adamantyl p-Bromobenzenesulfonate: Mechanistic Implications of a Record-Breaking Secondary α-Deuterium Kinetic Isotope Effect for an SN1 Substrate

By Adcock, William; Trout, Neil A.; Vercoe, David; Taylor, Dennis K.; Shiner, V. J., Jr.; Sorensen, Ted S.

~15 Citings

Copyright © 2021 American Chemical Society (ACS). All Rights Reserved.

112. 34S Isotope Effect on Sulfate Ester Hydrolysis: Mechanistic Implications

By Burlingham, Benjamin T.; Pratt, Lisa M.; Davidson, Ernest R.; Shiner, Vernon J., Jr.; Fong, Jon; Widlanski, Theodore S.
From *Journal of the American Chemical Society* (2003), 125(43), 13036-13037. Language: English, Database: CAPLUS, DOI:10.1021/ja0279747
~22 Citings